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Figure 1: Our CoolColor produces plausible and coherent colorized videos with different text guidance precisely.

Abstract
With the increasing demand for movie-watching, the significance
of colorizing classic black-and-white films is gradually growing. In
this paper, we introduce a text-guided old film colorization method
that uses natural language descriptions to guide the process, of-
fering precise control over colorization. Focusing on maintaining
video consistency, we address the unique challenges throughout old
film colorization, such as color flicker and motion blur. We employ a
data augmentation strategy to enhance the robustness and stability
of the model against motion across frames. Additionally, we imple-
ment a training-free sampling strategy to enhance correlation and
reduce instability through successive frames. Moreover, we utilize a
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post-processing strategy to maintain the structural integrity of the
original frames. Extensive experimental results demonstrate that
our method could provide a realistic and controlled solution to old
film colorization, enhancing the viewing experience for audiences.
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cessing; Computational photography.
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1 Introduction
As a classical narrative formation of art, the film industry has ex-
perienced dramatic development since its outset, with color being
a pivotal element. While rich in storytelling, those classic movies,
captured in black and white, have witnessed technological limita-
tions on hues nowadays. Restoring the colors of these monochrome
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films is of high artistic value, aiming to bridge the gap between the
present and the past and to enhance the viewing experience.

The challenge of colorizing old movies lies in maintaining a
delicate balance between preserving the fidelity of the original con-
tent and introducing colors authentically. Traditional automatic
colorization methods [29, 37] suffer from uncertainty and less-
controllability when facing various scenes, leading to distortion
of the directors’ intentions. Meanwhile, automatic colorization
methods always have limitations in terms of under-saturation,
over-fitting to specific datasets, and lack of general colorization
ability, especially for historical old-film scenes. Therefore, we in-
troduce a text-guided COherent OLd film COLORization method
(CoolColor), using flexible and efficient natural language descrip-
tions to guide the diffusion model [9, 24] with more detailed and
accurate colorization constraints. Thus, our method enjoys higher
saturation visual representation and enhances user controllability
compared with previous automatic colorization methods.

Different from image colorization, old film colorization needs
to pay more attention to video consistency except for the quality
of a single frame. As the colorization problem is ill-posed, diverse
reasonable color candidates may cause severe jitters across con-
secutive frames in a video. Besides, most old films have complex
degradation patterns, such as motion blur, noise, and compression
artifacts, leading to a more challenging task to colorize an old movie.
Thus, we propose a novel training scheme, called the progressive
equivariant training scheme, alleviating color overflow and artifacts.
We observe that even a little motion disturbance may cause large
variations across consecutive frames. To reduce such unstable affec-
tions, we propose to construct pairs of origin images and warped
images with a series of common geometric transformations, such
as rotation, shearing, and scaling. Then, the model is constrained to
maintain the same results after alignment on such pairs. To stabilize
the training process, we further propose a scale factor to control
such equivariant optimization in a progressive way.

Furthermore, we propose a training-free frame correlation-aware
sampling strategy, to reduce the interference of unstable factors
such as color-flickering and motion-blurring via inter-frame collab-
oration without extra training. Specifically, we introduce additional
frame-correlated connections between adjacent frames during the
inference at the origin self-attention modules. We utilize rich se-
mantic features of keyframes as anchors and conduct a cross-frame
attention mechanism to align consecutive frames in a batch.

Finally, we introduce a luminance-aware post-process strategy,
which maintains the brightness of pixels unchanged when adding
vivid color information to the grayscale images, preserving the
structural consistency between the original movie scene and col-
orized results. Such a simple yet effective post-process strategy can
enhance the integration and harmony between generated colors
and original grayscale values, creating a visual experience that
respects original aesthetics while introducing creative new colors.

Extensive experiments have demonstrated our old-film coloriza-
tion framework’s effectiveness compared to the state-of-the-art
baselines. Our contributions could be summarized as follows:

• We propose a simple yet effective text-guided old film col-
orization frameworkCoolColor, which fully utilizes the strong
generative prior of pre-trained diffusion models, and adapts

it to videos with a progressive equivariant training scheme
and a keyframe correlation-aware sampling strategy.

• We propose a new progressive equivariant training scheme
to reduce the sensitivity of the model to input, which steadily
improves its robustness against flickering.

• To improve video consistency, we present a training-free
keyframe correlation-aware sampling strategy to enhance
the overall visual quality and coherence with the guidance
of the best-colorized keyframe.

2 Related Works
2.1 Image Colorization
With the development of deep neural network, Cheng et al. [7]
propose the first deep-based colorization method, and Zhang et
al. [37] propose to optimize colorization as a classification problem
in quantized CIELab color space, producing more colorful results.
InstColor [25] utilizes detection boxes to reduce color overflow
and color incompletion. BigColor [13] utilizes the pre-trained gen-
erative prior of BigGAN [3] to colorize a grayscale image, while
ChormaGAN [27] and DeOldify [1] directly optimize a GAN from
scratch. However, GAN-based colorization methods are still limited
by unpleasant artifacts due to unstable training.

ColTran [15] proposes the first transformer-based [26] coloriza-
tion method, which builds a probability model and incorporates
a multi-stage colorization strategy. Inspired by the color cross-
entropy loss proposed by CIC [37], CT2 [29] also considers col-
orization as a classification problem, and feeds image patches and
color tokens together into a ViT-based network. Given the strong
ability of query-based vision transformer, DDColor [11] presents
a color decoder, which merges the grayscale structure and the
generated color information with the cross-attention mechanism
effectively.

2.2 Video Colorization
Compared with image colorization, video colorization not only
aims to colorize each frame vividly, but also need to maintain the
overall coherency. An intuitive idea is to apply image colorization
methods frame-by-frame, and optionally utilize post-processing
techniques to promote temporal consistency [16], which rely on
optical-flow estimation and mapping.

Different from optical-flow-based methods that concentrate on
detecting motion through pixel variations, RNN-based methods [34,
35] pay more attention to general sequence learning, which can in-
clude various types of temporal pattern recognition beyond motion.
Chen et al. [6] propose a 3D-convolution-based video colorization
method, which directly applies 3D convolutions to a stack of consec-
utive video frames to capture temporal consistency. However, these
methods always struggle to achieve an optimal balance between
model complexity and performance quality.

2.3 Diffusion Models for Colorization
Recently, the pre-trained text-to-image diffusion models have been
increasingly employed to tackle a wide range of low-level vision
tasks [12, 18, 21, 28]. As for image colorization, Liu et al. [20] pro-
pose a piggybacked diffusion model and a shortcut between the
VAE encoder and decoder to maintain structural consistency. Liang
et al. [19] build a multi-modal colorization framework based on



CoolColor: Text-guided COherent OLd film COLORization MMASIA ’24, December 03–06, 2024, Auckland, New Zealand

Figure 2: Overview of the proposed CoolColor framework.

ControlNet [36], which is an efficient and effective architecture to
finetune a diffusion model. L-CAD [5] creates new blocks to insert
grayscale structure information into denoising U-Net and proposes
a luminance-aware image compression module to maintain the
basic structure of the colorized image and reduce color overflow.
However, this method is also limited to a time-consuming diffusion
sampling process and low result resolution.

Compared with the above methods, our method not only fully
utilizes the generative potential of diffusion models, but also is
capable of high-efficiency training and inference, and decreases
color artifacts and color overflow. Our method can also produce
more consistent video-colorized results.

3 CoolColor Method
3.1 Preliminaries
DDPM. Diffusion models [9, 24] learn to represent natural image
distribution with a forward process and a backward process. During
the forward process, Gaussian noises are gradually added to the
clean image 𝑥0, producing noisy images 𝑥𝑡 , 𝑡 ∈ [1,𝑇 ],

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, (1)

where 𝑡 is the time step, 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 and 𝛼𝑡 are a set of hyper-
parameters, 𝜖 is a random sampled standard Gaussian noise. Note
that 𝑥𝑇 can be approximately treated as a pure Gaussian noise, the
backward process utilizes a neural network 𝜖𝜃 parameterized by 𝜃 ,
to recover a clean image 𝑥0 from a random sampled Gaussian noise
𝑥𝑇 by performing denoising process iteratively following

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)) + 𝜎𝑡𝑧, (2)

where 𝑧 is a randomly sampled Gaussian noise, 𝜎𝑡 is a hyper-
parameter to control the intensity of noises. Such a method to
generate new images is called Denoising Diffusion Probabilistic
Models (DDPM).

DDIM. In practice,𝑇 is always set to 1,000, and timesteps cannot
be skipped because 𝑧 in Eq. (2) is non-negligible. Therefore, generat-
ing images from a Gaussian noise within 1,000 steps of denoising is
time-consuming. Luckily, Song et al. [24] presents an efficient and
effective way to sample real images within as few as 20 timesteps,
called Denoising Diffusion Implicit Models (DDIM). This method
adjusts DDPM denoising in Eq. (2) to

𝑥𝑡−1 =
√
𝛼𝑡−1 (

𝑥𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡 , 𝑡)√
𝛼𝑡

)

+
√︃

1 − 𝛼𝑡−1 − 𝜎2
𝑡 · 𝜖𝜃 (𝑥𝑡 , 𝑡) + 𝜎𝑡𝑧,

(3)

Figure 3: Illustration of the equivariant training.

which can be deterministic when 𝜎𝑡 is set to 0, enabling skipping
timesteps to save time cost while keeping image quality.

LatentDiffusionModels.The requirements for high-resolution
image generation bring new challenges: directly applying diffusion
models to 512 × 512 image resolution brings too much computa-
tional cost. To balance the trade-off between image quality and
memory/time cost, Latent Diffusion Models (LDM) [23] proposes to
perform the above diffusion process in the latent space constructed
by Variational AutoEncoder (VAE), rather than in image space, to
save both training and inference cost. In specific, the VAE Encoder
compresses a 512 × 512 × 3 image to a 64 × 64 × 4 latent code,
and the VAE Decoder is trained to reconstruct the original image
from the latent code precisely. In our work, we utilize pre-trained
model weights of Latent Diffusion Models [2] to empower strong
generative priors on old film colorization tasks.

3.2 Coherent Old Film Colorization Framework
Inspired by the superior performance of conditional diffusion mod-
els on image generation and image editing, we construct our Cool-
Color framework based on a pre-trained Stable Diffusion model, as
illustrated in Fig. 2. Given a grayscale old film sequence 𝑣𝑔𝑟𝑎𝑦 ∈
R𝑏×𝐻×𝑊 ×1 where 𝑏 denotes the number of frames in a sequence,
and a text prompt P that describes scene and concrete color re-
quirements of input video, our colorization framework can produce
a vivid and plausible colorized video results 𝑣𝑐𝑜𝑙𝑜𝑟 ∈ R𝑏×𝐻×𝑊 ×3.
Specifically, we first utilize VAE to extract the latent variable 𝑧𝑔𝑟𝑎𝑦 ∈
R𝑏×𝐻/8×𝑊 /8×4 of 𝑣𝑔𝑟𝑎𝑦 . In order to extend the model’s function-
ality to include image colorization tasks, we create an additional
convolutional layer 𝐹𝑖𝑛 at the beginning of the U-Net (𝜖𝜃 in Sec. 3.1)
to merge gray latent variables 𝑧𝑔𝑟𝑎𝑦 and noisy latents 𝑧𝑡 during the
diffusion process mentioned in Sec.3.1, leading to a merged input
𝑧𝑚𝑒𝑟𝑔𝑒 . Such operation can be formulated by

𝑧𝑚𝑒𝑟𝑔𝑒 = 𝐹𝑖𝑛 (𝑧𝑡 , 𝑧𝑔𝑟𝑎𝑦). (4)

To harness the inherent exceptional capabilities of text-to-image
generation of the Stable Diffusion model, we commence by initial-
izing our model’s weights with a checkpoint from the pre-trained
v1.5 model. To maintain the stability of training, we initialize 𝐹𝑖𝑛
to zero, which will be updated smoothly during optimization. Such
simple merge strategy based on convolution blocks can not only
introduce grayscale conditions into the generation process effec-
tively, but also maximally preserve the original generative ability
of Stable Diffusion, ensuring realism and fidelity simultaneously.
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3.3 Progressive Equivariant Training Scheme
We experimentally find that even small motions or changes of
an object in consecutive frames will lead to significant flickering
during the colorization process. The networks tend to amplify subtle
pixel variations and hinder their video applications. Inspired by the
flicker suppression loss [31, 33], we propose an equivariant training
scheme for consistent video colorization.

Specifically, as shown in Fig. 3, for a grayscale image 𝑥𝑔𝑟𝑎𝑦 from
the training set, we create a warped image 𝑥𝑔𝑟𝑎𝑦 by random geomet-
ric transformations including rotation, translation, scaling, shear-
ing, and resized crop. We denote such transformation by F . F
augments a single grayscale image to a pair of consecutive frames,
which are expected to be colorized in the same manner. Thus, we
colorize origin grayscale image 𝑥𝑔𝑟𝑎𝑦 and the warped grayscale
frame 𝑥𝑔𝑟𝑎𝑦 = F (𝑥𝑔𝑟𝑎𝑦), resulting corresponding approximate col-
orized results, and reduce their L2 distance after alignment, which
can be formulated as:
𝐿𝐸𝐹 (𝑥𝑔𝑟𝑎𝑦) = E𝑡∼[0,𝑇 ] | |G(F (𝑥𝑔𝑟𝑎𝑦), 𝑡) − F (G(𝑥𝑔𝑟𝑎𝑦, 𝑡)) | |2, (5)

where we denote the mapping whichmaps input to colorized results
as G, 𝑡 is a randomly sampled timestep and 𝑇 is a hyper-parameter
which we set to 1,000. To construct G that maps a grayscale input
to an approximate colorized result, we seek power based on DDIM
sampling. Thanks to the elegant deterministic characteristic of
DDIM sampling, we can predict a denoised clean image 𝑥0 at any
timestep 𝑡 by

𝑥0 =
𝑥𝑡 −

√
1 − 𝛼𝑡 · 𝜖𝜃 (𝑥𝑡 , 𝑡)√

𝛼𝑡
. (6)

Therefore, G(𝑥𝑔𝑟𝑎𝑦, 𝑡) = 𝑥𝑐𝑜𝑙𝑜𝑟 is a combination of DDPM forward
process (Eq. (1)) and DDIM sampling (Eq. (6)). Specifically, we first
use Eq. (1) to obtain 𝑥𝑡 from 𝑥0 = 𝑥𝑔𝑟𝑎𝑦 , then use Eq. (6) to compute
an approximate colorized result 𝑥𝑐𝑜𝑙𝑜𝑟 .

Formally, our training objective is

𝐿 = 𝜆 · 𝐿𝐸𝐹 (𝑥𝑔𝑟𝑎𝑦) + 𝐿𝑟𝑒𝑐𝑜𝑛,
𝐿𝑟𝑒𝑐𝑜𝑛 = E𝑡∼[0,𝑇 ],𝜖,P | |𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡,P)||2,

(7)

where 𝐿𝑟𝑒𝑐𝑜𝑛 is the reconstruction loss to train Diffusion models, 𝜆
is a hyperparameter to control the intensity of equivariant loss.

We experimentally find that increasing 𝜆 progressively can im-
prove performance effectively. As we will show later in Sec. (4.3),
our methods after equivariant training experienced significant en-
hancements in the robustness of coherent video generation.

3.4 Frame Correlation-aware Sampling Strategy
The poor video consistency by frame-by-frame colorization severely
damages the visual experience of users. Inspired by the cross-frame
attention mechanism proposed by Tune-A-Video [32], we propose a
novel frame correlation-aware sampling strategy as shown in Fig. 4,
which effectively combines with our diffusion-based framework
and does not need any additional training, fine-tuning, or optimiza-
tion. Cross-frame attention is a simple but effective method that
leverages the inherent relationships between consecutive frames to
enhance overall video consistency performance. The core principle
of cross-frame attention is to dynamically allocate computational
resources based on the relevance of each frame to the task at hand.
The main difference lies in that origin cross-frame attention used

Figure 4: Illustration of the proposed frame correlation-
aware sampling strategy.

by [32] simply utilizes the first frame or the previous frame to
guide the generation process, while our method flexibly selects key
frames that are well-colorized as anchors.

Specifically, we first select a keyframe denoted by 𝑥𝑘𝑒𝑦 and re-
place self-attention blocks with our cross-frame attention blocks at
the last two blocks of the U-Net decoder. Each attention layer re-
ceives𝑚-frame inputs: 𝑥1:𝑚 = [𝑥1, · · · , 𝑥𝑚] ∈ R𝑚×ℎ×𝑤×𝑐 . Hence,
the linear projection layers produce𝑚 queries, keys, and values,
denoted by 𝑄1:𝑚 , 𝐾1:𝑚 , and 𝑉 1:𝑚 respectively. During the self-
attention operation of each frame in a batch, we replace their orig-
inal Keys and Values by the feature map of keyframe denoted by
𝐾𝑘𝑒𝑦 and 𝑉𝑘𝑒𝑦 , as shown in Eq. (8), for 𝑘 = 1, 2, · · · ,𝑚. By uti-
lizing cross-frame attention, the appearance and structure of the
objects and background as well as identities are carried over from
the keyframe to subsequent frames, significantly increasing the
temporal consistency of the generated frames.

AttnCF (Qk,K1:m,V1:m) = softmax

(
Qk (Kkey)T

√
d

)
Vkey (8)

As for the keyframe selection, we first colorize thewhole grayscale
video clip frame-by-frame and measure the overall quality of each
frame quantitatively with CLIP score and colorfulness metric. We
will introduce those metrics in 4.1. Thenwe choose the best frame as
the keyframe to achieve a coherent and high-quality video coloriza-
tion. Moreover, to reduce time costs and further cater to diverse
users’ appetites, we also provide an option for users to choose their
favorite frames as the keyframes. To obtain the best results, we
adopt the second strategy.

3.5 Luminance-aware Post-process Strategy
To furthermaintain a stable structure consistency between grayscale
inputs and colorized results, we additionally bring in a luminance-
replaced strategy as a post-processing strategy for old-film frame
colorization. Specifically, we first transform the image into CIELab
color space. Considering the luminance channel contains the struc-
ture information, while the chrominance channels carry the color
information, we combine the luminance (L) channel of grayscale
inputs and the chrominance (ab) channels of colorized results. To
put it more straightforwardly, we replace the luminance channel of
the colorization result with that from grayscale inputs. This results
in the final colorized outputs that retain both the original structure
and details information and the vivid color information produced
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Figure 5: Qualitative comparison between CoolColor and other text-guided colorization methods. Our colorized videos enjoy
higher stability (indicated by yellow boxes) and more plausible visual effects. Zoom for better visualization.

by our CoolColor method, ensuring the colorization appears natural
and harmonious with the original image.

4 Experiments
4.1 Implementation Details
Training. We use a subset of SA-1B dataset [14] as our training
data. We first filter out under-saturated images using colorfulness
metric [8], then utilize BLIP [17] to obtain captions as text guidance
during training, and further filter out images that hold no color
words in the caption. We finally got about 220,000 images for train-
ing. We use the pre-trained Stable Diffusion v1.5 checkpoint as the
starting point, and then train our CoolColor with a single NVIDIA
A40 GPU for 8k iterations with a batch size of 32. We use AdamW
optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, and learning rate of 10−4. We
linearly increases 𝜆 from 0 to 0.001.

Evaluation.We select video clips from the classic old movies
Stagecoach (1939), Waterloo Bridge (1940), Roman Holiday (1953),
and The Sound of Music (1965) for validation. The original Stage-
coach, Waterloo Bridge, and Roman Holiday are monochrome, with
random degradation (such as flickering, compression artifacts, or
noises) throughout the frames, and can be colorized directly. The
original The Sound of Music is chromatic, as a reference of coloriza-
tion, and can be colorized after a grayscale preprocessing.

We adopt CLIP Score[22] to measure the color accuracy, which
calculates cosine similarity between the CLIP features of prompts
and colorization results, and Colorfulness [8] to measure the overall
colorization vividness. For video colorization, we mainly utilize the
preference rates of the user study as the evaluation metrics.

4.2 Comparison
Qualitative Comparison. As shown in Fig. 5, we make com-
parisons with state-of-the-art text-guided colorization methods
L-CoDe [30] and L-CoDer [4]. As for single-frame colorization, our
CoolColor has obvious advantages in colorizing old movie scenes

Table 1: Quantitative comparison and user preference rates.

Method Objective Metrics User Study

Colorfulness↑ CLIP Score↑ Accuracy Stability Realism Overall

DeOldify 25.63 - 10.6% 3.5% 8.8% 14.1%
HistoryNet 18.51 - 1.2% 7.1% 4.1% 5.3%

L-CoDe 58.96 23.95 0.0% 0.0% 0.0% 0.0%
L-CoDer 26.02 24.61 1.2% 3.5% 2.4% 3.5%

Ours 38.53 25.50 87.1% 85.9% 84.7% 77.1%

with both realism and vividness. L-CoDe generates a red-biased
color tone throughout the given scenes, while L-CoDer exhibits
inflexibility and inaccuracy in response to the changes in input text
prompts. Significant color overflow appears in the results of both L-
CoDe and L-CoDer, which is effectively suppressed in our method.
As for the whole video, our method can produce more consistent
results than L-CoDe and L-CoDer. Specifically, our CoolColor has
strong uniformity in the regions whose colors have been specified
in the text prompt (such as skin complexion and clothing) and good
coherence in the image details that could not be covered by the text
(such as tie and jewelry) in the meanwhile. Besides, our method
also performs well on prompts that indirectly indicate colors (such
as the green colors of the rock implied by the word vegetated).

Quantitative Comparison. As shown in Table 1, we make
comparisons with two unconditional methods, DeOldify[1] and
HistoryNet[10], to demonstrate our superior visual effect, and two
text-guided methods, L-CoDe and L-CoDer, to justify the flexibility
and accuracy in text control of our method. Our method achieves
the highest CLIP Score and second-best Colorfulness under the
users’ autonomous selecting strategy of the keyframes, indicating
our method can not only ensure that the generated colors comply
with text control but also balance the relatively high saturation and
visual naturalness. When we choose keyframe automatic selection
strategies with higher colorfulness and CLIP Score preferences
respectively, our method performs better numerically than the
given manual selection strategy, namely 72.01 for colorfulness and
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Figure 6: Effect of the proposed progressive equivariant train-
ing scheme.

27.32 for CLIP Score. By comparison, although L-CoDe achieves
the highest Colorfulness, it suffers from over-saturation as also
qualitatively verified by the red-biased color tone in Fig. 5.

User Study. Since different users have different aesthetic re-
quirements, we further conducted a user study to show the superior
performance of our method. We invite 17 users to evaluate 5 video
clips. In each question, participants are asked to measure several
dimensions and select the best-colorized result among several com-
pared methods. We define best based on the following four aspects:
(1) consistency with the text descriptions (Accuracy); (2) unifor-
mity of the colors throughout the frames (Stability); (3) realism
of the frames independent from the given text prompt (Realism);
(4) comprehensive personal preference (Overall). The statistics are
summarized in Table 1, which shows our method outperforms all
the other comparison methods.

4.3 Ablation Study
We provide qualitative ablations for the progressive strategy of our
equivariant fine-tuning loss in Fig. 6 and the inter-frame stabiliza-
tion effect of the cross-frame attention blocks in Fig. 7.

Progressive equivariant training scheme. As mentioned in
Sec. 3.3, we stabilize the training of the model while improving the
model’s robustness against flickering by adjusting the hyperparam-
eter 𝜆 of equivariant fine-tuning loss. We train three colorization
networks with different 𝜆 growth modes to study the impact of 𝐿𝐸𝐹 .
In the adjacent three frames shown in Fig. 6, there is a noticeable
flicker in the color of the man’s tie and the passerby’s clothes when
𝜆 = 0, which means without 𝐿𝐸𝐹 , even very subtle movement of

Figure 7: Effect of the proposed frame correlation-aware sam-
pling strategy.

the objects will lead to severe color inconsistency. Although this
phenomenon is alleviated when 𝜆 = 0.001, it still yields unstable
facial colors of the passerby. When 𝜆 linearly increases to 0.001,
which is the final strategy we use, these flickers are well suppressed.

Frame correlation-aware sampling strategy. We remove the
cross-frame attention layers to study their role in maintaining inter-
frame coherency and stability. The changes in object brightness
caused by movements can lead to differences in grayscale values,
and further affect the color stability in adjacent frames. In Fig. 7, the
woman’s white clothes, theman’s tie, and the background building’s
color exhibit different color distributions in adjacent frames. By
using the best colorization result as the keyframe (indicated by the
red frame border), the scenery details in the remaining frames can be
better colorized coherently, further demonstrating the effectiveness
of our proposed frame correlation-aware sampling strategy.

5 Conclusion and Discussion
In this paper, we propose a novel diffusion-based framework for
colorizing old film frames using natural language descriptions. Our
CoolColor ensures temporal consistency and superior video syn-
thesis through anchor-based cross-frame attention and equivariant
training. Extensive experiments show the superiority of our method
in accuracy, realism, and controllability.

Limitations and Future Work. Although our method gener-
ates plausible and coherent colorized videos, the frame correlation-
aware sampling struggles with large motion variations due to its
reliance on intrinsic feature similarity from Stable Diffusion. In
future work, we will explore more effective ways to vividly colorize
long videos with diverse motions.
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